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Abstract—We address the problem of adaptive information-
optimal data collection in time series. Here a remote sensor
or explorer agent throttles its sampling rate in order to track
anomalous events while obeying constraints on time and power.
This problem is challenging because the agent has limited
visibility — all collected datapoints lie in the past, but its
resource allocation decisions require predicting far into the
future. Our solution is to continually fit a Gaussian process
model to the latest data and optimize the sampling plan on line
to maximize information gain. We compare the performance
characteristics of stationary and nonstationary Gaussian process
models. We also describe an application based on geologic
analysis during planetary rover exploration. Here adaptive
sampling can improve coverage of localized anomalies and
potentially benefit mission science yield of long autonomous
traverses.

I. INTRODUCTION

THis work addresses the problem of adaptive sensing of
time series data. We present methods that enable self-

throttling sensors to adjust their data collection rate, provid-
ing enhanced coverage during transient anomalies of special
interest. This capability could benefit power-constrained en-
vironmental sensor networks. For example, a remote seismic
sensor could conserve resources by limiting its measurements
during normal conditions and increasing its sample cadence
during rare earthquake events [1]. Similar methods could
enhance robotic exploration where a sensor follows a fixed
trajectory, such as an exploration rover transect or a deep
space flyby. These agents commonly observe long homoge-
neous segments punctuated by short periods of rapid change.
We focus here on adaptive sensing problems that have the
following characteristics:
• An agent senses a single scalar value over time, subject

to constant white measurement noise.
• The underlying signal usually comes from a background

process whose behavior is slowly varying and whose
parameters can be characterized in advance.

• There are rare anomalous periods during which the
process may change more rapidly.

• Resource constraints limit the agent to a small total
number of measurements, but the agent can analyze
collected data to revise its sampling plan on the fly.
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• We aim to optimize modeling fidelity, e.g. information
gain with respect to the underlying noiseless values.

Our fidelity objective is independent of the absolute signal
magnitude; an optimal policy will sample time steps whose
values are uncertain, but it will not exhibit any preference for
unusually high or low signal values. This problem equates to
active learning [2] in which the agent allocates future mea-
surements to reduce uncertainty as measured by the Shannon
entropy of the process at all time steps. Common measures
of information gain are the entropy of the measurements
themselves [3] or their mutual information with respect to un-
observed time steps [4]. Submodular optimization algorithms
can efficiently solve a broad class of these cost functions [5].

Adaptive sampling of time series is related to classi-
cal spatial experimental design [6], but it also has unique
challenges. One is measurement imbalance — all previous
data lie in the past, but this region cannot be observed
again. Planning future measurements requires predicting the
future, extrapolating beyond the range of collected data. A
second challenge is that information-driven sampling requires
accurate second order statistics because the value of each
new observation is related to its prediction certainty. A third
challenge is limited control; the agent may only choose the
length of time to wait before the next sample. Finally, time
series sampling domains often require extreme computational
efficiency; power-limited sensor motes must react in time to
capture transient events.

There has been some limited previous work in this area.
Researchers have investigated information-optimal adaptive
time series sampling for Markov chains and graphs [7], [8].
These tests typically use batch optimizations rather than an
on-line update, and are limited to the family of graphical
models. An ARIMA-based method by Law et al. does adapt
to local changes in real time [1], but this approach relies on
heuristic rules and does not enforce a global budget on the
number of samples. We seek a new approach to permit a true
information-theoretic treatment, with on-line updates, over a
broader class of probabilistic models.

Specifically, we perform adaptive online sampling of time
series using Gaussian process (GP) time-series regression
models [9]. These models are favorable since they define a
full predictive posterior distribution and compute observation
differential entropies in closed form. Most standard GP for-
mulations are not appropriate for adaptive sampling because
they are stationary, i.e. the covariance function is time-
invariant. In such cases information gain predictions are com-
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pletely independent of the measurement values [10], resulting
in evenly-spaced samples. Consequently stationary models
are not appropriate for localized anomalies. Additionally, GP
model inference can be computationally expensive. Typically
parameter fitting requires unbounded iterative procedures
or Markov Chain Monte Carlo sampling, precluding fast
reactions by power-limited sensor motes.

This work presents a simple but effective GP formulation
to address the requirements of adaptive time series sampling.
We introduce nonstationary behavior by fitting a local mod-
ulation to the background GP hyperparameters. It is tanta-
mount to a constrained local warping of the input space [11]
that is always centered on the current time step. We identify
deviations from the background process by regularly recom-
puting the degree of local warping on the fly during data
collection. The following section reviews classical Gaussian
process prediction and sample selection. Section III describes
our approach and explores its performance in simulation.
Section IV describes potential applications for adaptive rover
sampling during long traverses. We report results of an
autonomous rover traverse incorporating autonomous data
collection with a Visible Near Infrared (VNIR) spectrometer.

II. BACKGROUND

A remote agent observes a time series at times t ∈ T .
Each time is associated with a vector xt ∈ Rd of known
independent variables. This could be the clock time, creating
a 1D input space, or it could have more dimensions con-
taining contextual information such as physical location. The
agent samples the environment to yield scalar measurements
yt ∈ R. We will write the set of independent variables as
X = {xt}t∈T and the set of measurements as Y = {yt}t∈T .

The agent must select measurement times to balance
the expected information gain of these samples and cost
expended. At any given time the agent’s only real de-
cision is the time of the next observation. However this
requires considering the entire budget for all samples and the
likelihood of encountering anomalies later. Without loss of
generality, we will formulate the adaptive sampling problem
as extrapolating from the set of all previous measurements
at times T to select future measurement times T ′, where the
total number of measurements is bounded by a budget B, e.g.
|T ∪T ′| ≤ B. The agent plans its future samples, waits until
the next planned sample time, acquires a new measurement,
and then revises its sampling plan before starting the process
again. The following sections detail our time series modeling
strategy, measurement selection, and nonstationary models
capable of tracking anomalies.

A. Gaussian Process Prediction
We treat the environmental process under study as a

function f(x) : Rd 7→ R. Each sample is a measurement
of this process perturbed by Gaussian noise:

y = f(x) +N (0, σ2) (1)

We model the environment with a Gaussian process (GP),
a prior over functions f(x) such that the value of any

set of samples is multivariate Gaussian-distributed [9]. The
prior takes the form of a covariance function κ(xi,xj)
parameterized by hyperparameters θ. This represents sim-
ilarity between input locations, inducing a GP covariance
matrix K with elements given by the covariance function
evaluated between each pair of points. We will use the
shorthand KX to represent the covariance matrix for previous
measurements X; it contains κ(xi,xj) in the ith row and the
jth column. The prior distribution is P (f(X)) = N (0,KX).
Additive measurement noise contributes to the diagonal of the
covariance matrix. With some abuse of notation, we will use
Y to represent the column vector of measured values:

P (Y ) ∼ N (0,KX + σ2I) ∝ e−
1
2Y

T (KX+σ2I)−1Y (2)

A popular form for the covariance function is the squared
exponential [9], parameterized by the hyperparameters θ =
{ψ1, ψ2, w1 . . . wd} consisting of positive coefficients ψ1 and
ψ2, as well as a length scale wk for each input dimension:

κ(xi,xj) = ψ1 + ψ2 exp

{
−1

2

d∑
k=1

(xik − xjk)
2

w2
k

}
(3)

Typically the agent learns hyperparameters from data us-
ing evidence maximization (maximum likelihood fitting) or
Markov Chain Monte Carlo (MCMC) techniques. We refer
the reader to [9] for further details.

We define the set of candidate observations at future times
T ′, with independent variables X ′ = {x′t}t∈T ′ . The matrix
KX′ contains pairwise covariance function values for these
candidate observations. The matrices KXX′ and KX′X repre-
sent covariance between old and new measurement locations.
For example, to the element in the ith row and jth column of
KXX′ is the covariance function evaluated with the ith old
location and the jth future location. This forms the combined
matrix:

KX∪X′,X∪X′ =

[
KX KXX′

KX′X KX′

]
(4)

The Gaussian process prediction equations [9] estimate future
observations. We simply condition the full joint Gaussian on
previous measured values in Y :

µX′ |Y = KX′X(KX + σ2I)−1Y (5)
KX′ |Y = KX′ − (KX′XKX + σ2I)−1KXX′ (6)

New collected data can augment this onboard model over
time to improve certainty of future predictions.

B. Sample Selection

In our formulation the agent selects a fixed-size subset T ′

to maximize information gain, optimally reducing the entropy
of the function everywhere in the environment. Shewry
and Wynn show that under some weak assumptions this is
equivalent to maximizing the entropy of the observations
themselves [3], a procedure known as Maximum Entropy
Sampling (MES). MES reflects the intuitive idea that we
should collect data where the result is most uncertain. In
Gaussian spatial processes the differential entropy of X ′ is
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related to the determinant of the covariance matrix KX′ ,
leading to the objective:

R(X ′;X) = H(X ′|X) =
1

2
ln
{
(2πe)ddet(KX′)

}
(7)

This objective has a closed form. While the entropy objective
is formally NP-hard, it belongs to a class of submodular func-
tions [5] for which greedy sample selection often performs
quite well. We note there exist other submodular measures
of information gain such as mutual information with respect
to a reference set [5]. A formal treatment of the mutual
information criterion is beyond our scope, suffice to say one
can often optimize it using similar methods [4].

Sample selection is comparatively simple for a 1D time se-
ries. Here we select a uniform local sampling rate that applies
within the future time horizon α. The total sample budget
is fixed, so this local rate fully determines the distal sam-
pling rate used beyond. The agent performs a one-parameter
optimization to find the best allocation of measurements
between local and distal segments. This is faster than most
standard MES algorithms such as pointwise greedy selection
since the number of determinant calculations scales with the
constant number of budget splits considered. It improves
numerical stability since the domain is fully-populated with
observations for each determinant calculation. Nevertheless,
greedy or non-myopic MES are both reasonable alternatives
when power resources permit.

C. Nonstationary Covariance

Note that equation 7 is entirely independent of collected
measurements Y . As a consequence the optimal sample
placement can be computed in advance [12]. The process is
stationary, i.e. the covariance is the same everywhere in the
environment. This leads to sampling at regular time intervals
and is obviously undesirable for tracking anomalies.

Researchers have proposed several alternatives that provide
nonstationary behavior. Paciorek et al. define a smoothly-
varying covariance function based on the Mátern form, fitting
its hyperpameters using MCMC techniques [13]. Alterna-
tively one can define local length scales with a smooth
process and fit them jointly with the GP hyperparameters
using gradient descent [14]. Adams et al. propose a Gaussian
process Product Model defined as the pointwise product of
two latent Gaussian processes, and fit this using an Expec-
tation Maximization approach [15]. In general, these latent
scale approaches may involve more challenging optimization
than is possible for limited computation power available to
the remote agent. Additionally, it can be difficult to guarantee
their stability or scale them to large datasets. To date these
models have been applied to a very limited range of real
world on line scenarios. Others have induced nonstationary
behavior by partitioning the input space into many local
Gaussian processes [16]. This is computationally effective,
but one still needs a global covariance matrix to plan with
the entire sample budget.

Alternatively, one can abandon the pure Gaussian pro-
cess formulation; Low et al. demonstrate the use of a

log-Gausssian process for mapping environments containing
localized hotspots [10]. The entropy of log-GPs is similar
to expression 7 but with an additional term based on the
predictive mean, leading to the objective:

RLGP(X
′;X) =

1

2
ln
{
(2πe)ddet(KX′)

}
+ µX′ (8)

This objective is dependent on observations through the µX′
term. It favors adaptive sampling behavior with a high density
of samples near hot-spot locations with high predicted mean.
Following our objective of reconstruction fidelity (Section
I), we use a nonstationarity form where the data may not be
log-GP distributed, and any period of rapid change might be
interesting regardless of the absolute signal magnitude.

III. METHOD

Here we propose a simple method for introducing non-
stationarity to permit adaptive sampling in GP time series.
It is related to previous work that warps the input space
with a monotonic function, as in [11], or augments Gaussian
processes with additional input dimensions, as in [17]–[19].
These modifications create covariance relationships that are
nonstationary with respect to original time index. Here, we
warp the time series symmetrically about the current time
step to model a local anomaly. We then fit the degree of
warping at run time using maximum likelihood estimation.
This simplification is effective for time series applications
because nonstationarity in the distant past and future has little
practical effect on the adaptive sampling. In a 1D time series,
the only real decision is the amount of time to wait until the
next measurement. Our proposed model always returns to the
baseline stationary process in the far future.

The local warping takes the form of a piecewise linear
function z(xt) based on the difference between the time
index t and the current time step tnow. It has a constant slope
within a local neighborhood α of the current time step:

z(xt) =

 −1, t < (tnow − α)
t−tnow

α , (tnow − α) ≤ t ≤ (tnow + α)
1, (tnow + α) < t

(9)

We define a new covariance function based on Equation 3,
with a new length scale hyperparameter wz determining the
local warping’s influence.

κ(xi,xj) =

ψ1 + ψ2 exp

{
− (z(xi)− z(xj))2

2β2
−

d∑
k=1

(xik − xjk)
2

2w2
k

}
(10)

Large β values reduce the covariance function to the standard
stationary squared exponential form. Small values reduce
covariance in the neighborhood of tnow, increasing its in-
formation value which favors dense local sampling. Figure
1 shows a visual example. Small values of β pinch the co-
variance structure and reduce the local temporal correlation.
The constant α is fixed in advance, and controls the size of
the temporal neighborhood. It is tantamount to a smoothing
factor determining the rate at which the process alternates
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Fig. 1. Local temporal warping Left: z(x) is a piecewise linear function
that is symmetric about the current time step. Center: We fit the length
scale associated with z(x) to define a new covariance matrix. A large β
corresponds to a near-stationary covariance structure. Bright pixels represent
large-valued elements. This covariance matrix shows a sequence with 200
hypothetical sampling locations, evaluated when the agent reaches the
midway point (sample 100). Right: a small value of β reduces temporal
correlation, as would be the case for a local anomaly.

between anomalous and baseline segments. Large temporal
neighborhoods cause the agent to change its behavior more
slowly; it will be less susceptible to noise, but also slower
to recognize new anomalies and to return to its baseline
sampling rate after the anomaly has ended.

We fit hyperparameters by maximizing the marginal data
log likelihood:

log p(Y |X) = − 1
2 { Y

T (KX + σ2I)−1Y

+|KX + σ2I|+ n log(2π) } (11)

All hyperparameters except β are set ahead of time by
training on the baseline process. This corresponds to a strong
point mass prior on hyperparameters. At runtime Equation
11 then reduces to a one-parameter optimization of β. If the
observations do not depart significantly from the baseline
model, β will be large and the Gaussian process is stationary.
We perform this optimization once per time step by bracket
search, though gradient descent could also be used.

Figure 2 shows an example. Here an agent measures a
univariate random walk process. We use a held out data set
to fit all hyperparameters except β. The sequence begins with
a small set of 10 evenly-spaced measurements to seed the
GP prediction (Figure 2). The agent then enters an adaptive
loop in which it first evaluates new values {z(xt)}t∈T , then
fits the degree of temporal warping β using Equation 11,
then computes a new covariance matrix, and finally plans
the observation spacing for the remaining budget using the
Maximum Entropy Sampling procedure described above. The
process of data collection, model fitting, and planning repeats
for each new simulation time step (Algorithm 1).

The random walk rate increases at t = 2, and Maximum
likelihood estimation effectively detects the local anomaly.
After completely passing the anomaly the agent resumes
its baseline sampling rate near t = 3. The agent begins
to increase its sample spacing around t = 2.5 because it
has nearly exhausted its budget and must plan to cover the
entire time sequence. The local warping model assumes a
permanent return to the baseline state in the future, so it
spends samples agressively. This is appropriate if anomalies
are rare or short; otherwise, an effective ad hoc remedy is to
plan based on a fixed fraction of the true budget remaining.

Input: Initial samples X = {xt}t∈T ,
Measurements Y = {yt}t∈T ,
Temporal neighborhood α,
Hyperparameters θ = {φ1, φ2, w1 . . . wn},
Total sample budget B

while tnow < tend and |X| < B do
compute Z = {z(xt)}t∈T via Eqn. 9;
find β to maximize log p(Y |X) via Eqns. 11-10;
use β to compute covariance KX |Y via Eqn. 6;
plan new samples X′ with greedy selection,

to maximize det(KX′ |Y),
subject to |X ∪X′| ≤ B;

wait until next sample time step tnext;
collect datum, X = X ∪ xtnext , Y = Y ∪ ytnext ;
tnow ← tnext

end

Algorithm 1: Adaptive time series sampling.
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Fig. 2. Adaptive time series sampling with local temporal warping. Top:
an agent sequentially samples a random walk, the rate of which increases
dramatically in the segment labeled “anomaly.” Bottom: The agent performs
maximum likelihood estimation of the local warping parameter β at each
time step. It increases the local warping near t = 2, which in turn increases
sample density to cover the anomaly feature.

We simulated 100 random walks similar to Figure 2, hiding
in each an anomalous segment that was 10% of the total
sequence length. We then reconstructed each time series
using the agent’s sparse measurements, linearly interpolating
the collected data. The mean squared difference between
the reconstruction and the actual time series serves as a
performance score. Figure 3 shows a typical anomaly seg-
ment reconstructed from samples collected by stationary and
nonstationary models. There is a visible benefit due to the
adaptive system’s ability to detect, represent, and react to the
anomaly. This implementation uses unoptimized code on a
modern laptop processor. The entire process of refitting the
GP model and replanning the sample rate requires just 0.023
seconds on average. This suggests the technique is feasible
for sub-second sample rates by power-constrained platforms.

Figure 4 (Right) shows the resulting reconstruction fidelity
scores for various values of α. Box plots show the squared
reconstruction error for the traverse as a fraction of the
error incurred by the stationary alternative. The adaptive
method significantly outperforms stationary sampling for a
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Fig. 3. Reconstruction error for a simulated test segment. The nonstationary
model uses the same number of samples, but improves the reconstruction
fidelity.
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Fig. 4. Performance as a function of the smoothing parameter α on the
simulated test segments. We performed 100 random trials and compared
the reconstruction errors to a stationary alternative. The box-and-whisker
diagram shows the extrema, middle half, and median of the errors. Single
outlier datapoints appear as red “+” symbols. The central notch identifies a
90% confidence interval on the median. Boxes show median and quartiles
of the performance distribution, with whiskers indicating extrema and red
“+” symbols the extreme outliers.

wide range of α values. Performance is robust within a factor
of 2-3 around the optimal value, and degrades gracefully
outside this range. Very large values of α reduce to the
stationary case. In practice, one can set α in advance using
prior knowledge of feature timescales or tune it using cross-
validation error on an analogue dataset.

IV. APPLICATION TO ADAPTIVE VNIR SPECTROSCOPY

Here we illustrate adaptive acquisition of Visible Near
Infrared (VNIR) spectra by a rover, during a long traverse
that took place during field experiments at Amboy Crater
[17]. The rover carried a mast-mounted VNIR spectrometer
capable of measuring the 400-2000 nm range. The Am-
boy terrain contains regions of basalt and sediment having
different spectral signatures (Figure 5). The rover travelled
under autonomous navigation with obstacle avoidance, and
meanwhile acquired densely spaced (2.5m interval) spectral
measurements from the terrain directly in front of the rover.

The traverse area was mostly homogeneous clay sediment,
but two distinctive basalt platforms showed much greater spa-
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Fig. 5. VNIR spectra acquired autonomously by a mast-mounted rover
instrument. Two key endmembers are shown, illustrating a significant dif-
ference in slope across the 400-900nm range. Insets show navigation camera
context images associated with these spectra. (A) Context image taken during
acquisition of the sediment endmember spectrum. The spectrometer field of
view lies in the lower center of the image. (B) Context image for the basalt
endmember spectrum.

tial and spectral variation. These spectra can be challenging to
interpret. Typical analyses use diagnostic absorption features,
matching against spectral libraries, or with linear unmixing
based on endmember spectra. Here a much simpler strategy
is sufficient. We use the ratio of 600nm and 410nm bands as
a single index describing the abundance of the two material
types. This yields a univariate process sampled at 278 time
steps. We then test adaptive sampling by simulating traverses
that subsample these measurements.

The terrain can vary on short spatial scales of less than 5
meters, so we provide an allowance of 140 samples. This is
half of the measurements that were actually performed, so the
agent can only sample 50% of the potential sites. As before
we consider two alternatives: an even sampling strategy
corresponding to the stationary GP, and the adaptive system.
We fit the noise and temporal lengthscale parameters of the
GP using a short initial time segment and hold them constant
thereafter. Then the agent waits until the next planned sample,
adds it to the set of collected data, and then recomputes the
complete plan for the remaining budget.

We performed a series of 20 trials to simulate adaptive
sampling during this traverse, starting each virtual traverse at
a different time step. These are not independent experimental
trials, but they do mitigate the intrinsic variability of the score
due to chance measurements and noise spikes. Figure 6 (Left
panel) shows a typical result. Here the adaptive approach
recognizes the anomaly and increases the measurement rate
in the basalt platform. This improves performance with dense
sampling of the anomaly that resolves the signal’s positive
and negative “spikes.” These correspond to transitions across
small concentrations of basalt and sediment. It comes at the
cost of undersampling the tails of the traverse as the agent
starts to run out of samples. Figure 6 (right panel) shows re-
construction error. The even sampling method underperforms
adaptive sampling, with a median error over 50% larger. Even
spacing undersamples the abrupt discontinuities and steep
slopes in the anomalous region.



IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 6

0 0.05 0.1 0.15 0.2

f(x
)

0 0.05 0.1 0.15 0.2
−5

0

5

Time advances →

lo
g 
β

C	
B	
A	


Stationary Nonstationary

30

35

40

45

50

55

M
ea

n 
sq

ua
re

d 
re

co
ns

tru
ct

io
n 

er
ro

r

Fig. 6. Amboy traverse sequence. The rover estimates f(x), a diagnostic band ratio used to discriminate basalt from sediment. Left top: basalt index and
sample locations. Dots show measurement locations selected by adaptive data collection. Insets show navigation imagery from the traverse. (A) The rover
enters the basalt platform area. (B) A bright, high-albedo patch of unknown material appears in the middle of the basalt platform region. (C) Homogeneous
sediment region dominates the second half of the traverse. Left bottom: Optimal β values selected online (log scale). The adaptive approach detects an
anomaly in the center of the traverse. Right: Reconstruction error for 10 initializations, showing the extrema, middle half, and median of the data.

V. DISCUSSION AND CONCLUSIONS

Adaptive time series sampling is a challenging prob-
lem due the agent’s limited visibility, limited control, and
real-time computational requirements. This work presents
a novel adaptive sampling method based on maximizing
the information gain with respect to a Gaussian process
model. Here a new covariance function represents local
nonstationarity by reducing temporal correlations within a
symmetrical neighborhood of the current time step. The
approach shows improved performance on varied simulated
and real datasets with varying noise levels and different forms
for the anomalous signals. GPs offer a principled solution for
adaptive sampling; they can incorporate additional inputs or
alternative covariance functions, fitting these relationships di-
rectly from training data. Moreover, they can model the joint
probability distribution of all future measurements to support
information-optimal sampling. An information theoretic per-
spective decouples the challenges of modeling, (e.g. creating
the covariance matrix) from the challenge of planning an
experimental design with limited resources. These attributes
make the nonstationary GP model a compelling solution for
adaptive sensing of time series.

ACKNOWLEDGEMENT

A portion of this work was performed at the Jet Propulsion Laboratory,
California Institute of Technology. The Amboy data was collected under
NASA ASTEP Grant NNG04GB66G “Science on the Fly” and performed
at Carnegie Mellon University. More generally, this work is supported
under the Life in the Atacama project by NASA Astrobiology Science
and Technology for Exploring Planets (ASTEP) Grant NNX11AJ87G, with
program executive Mary Voytek. Copyright 2013, California Institute of
Technology. All Rights Reserved. U.S. government support acknowledged.

REFERENCES

[1] Y. Law, S. Chatterjea, J. Jin, T. Hanselmann, and M. Palaniswami,
“Energy-efficient data acquisition by adaptive sampling for wireless
sensor networks,” in Proceedings of the 2009 International Conference
on Wireless Communications and Mobile Computing: Connecting the
World Wirelessly. ACM, 2009, pp. 1146–1151.

[2] Cohn, D.A. and Ghahramani, Z. and and Jordan, M.I., “Active Learning
with Statistical Models,” Journal of Artificial Intelligence Research,
vol. 4, pp. 129–145, 1996.

[3] M. C. Shewry and H. P. Wynn, “Maximum entropy sampling,” Journal
of Applied Statistics, vol. 14, no. 2, p. 165170, 1987.

[4] C. Guestrin, A. Krause, and A. Singh, “Near-optimal sensor placements
in gaussian processes,” in ICML, 2005, pp. 265–272.

[5] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements
in gaussian processes: Theory, efficient algorithms and empirical
studies,” JMLR, vol. 9, pp. 235–284, 2008.

[6] N. A. Cressie, Statistics for Spatial Data. Wiley NY, 1991.
[7] A. Krause and C. Guestrin, “Optimal nonmyopic value of information

in graphical models-efficient algorithms and theoretical limits,” in
IJCAI, vol. 19, 2005, p. 1339.

[8] D. Thompson, T. Smith, and D. Wettergreen, “Information-optimal
selective data return for autonomous rover traverse science and survey,”
in Robotics and Automation, 2008. ICRA 2008. IEEE International
Conference on. IEEE, 2008, pp. 968–973.

[9] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. Cambridge, MA: MIT Press, 2006.

[10] P. K. Kian Hsiang Low, John M. Dolan, “Information-theoretic ap-
proach to efficient adaptive path planning for mobile robotic envi-
ronmental sensing,” Proceedings of the International Conference on
Automated Planning And Scheduling, 2009.

[11] E. Snelson, C. Rasmussen, and Z. Ghahramani, “Warped gaussian
processes,” NIPS, vol. 16, pp. 337–344, 2004.

[12] B. K. H. Low and S. Chien and J. Dolan and J. Chen and D. R.
Thompson, “Decentralized Active Robotic Exploration and Mapping
for Probabilistic Field Classification in Environmental Sensing,” AA-
MAS, 2012.

[13] C. Paciorek and M. Schervish, “Nonstationary covariance functions
for gaussian process regression,” Advances in Neural Information
Processing Systems, vol. 16, pp. 273–280, 2004.

[14] C. Plagemann, K. Kersting, and W. Burgard, “Nonstationary gaussian
process regression using point estimates of local smoothness,” Machine
Learning and Knowledge Discovery in Databases, pp. 204–219, 2008.

[15] R. Adams and O. Stegle, “Gaussian process product models for
nonparametric nonstationarity,” in Proc. 25th International Conference
on Machine Learning. ACM, 2008, pp. 1–8.

[16] R. Urtasun and T. Darrell, “Sparse probabilistic regression for activity-
independent human pose inference,” in CVPR, 2008, pp. 1–8.

[17] D. R. Thompson and F. Calderón P. and D. Wettergreen, “Autonomous
science for large-scale robotic survey,” Journal of Field Robotics,
vol. 28, no. 4, 2011.

[18] G. Hollinger, B. Englot, F. Hover, U. Mitra, and G. Sukhatme,
“Uncertainty-driven view planning for underwater surface inspection,”
Intl. Conference on Robotics and Automation, 2012.

[19] T. Pfingsten, M. Kuss, and C. Rasmussen, “Nonstationary gaussian
process regression using a latent extension of the input space,” URL
http://www. kyb. mpg. de/˜ tpfingst, 2006.


